martes, 19 de abril de 2016

Circuito RLC

En electrodinámica un circuito RLC es un circuito lineal que contiene una resistencia eléctrica, una bobina (inductancia) y un condensador (capacitancia).
Existen dos tipos de circuitos RLC, en serie o en paralelo, según la interconexión de los tres tipos de componentes. El comportamiento de un circuito RLC se describen generalmente por una ecuación diferencial de segundo orden (en donde los circuitos RC o RL se comportan como circuitos de primer orden).
Con ayuda de un generador de señales, es posible inyectar en el circuito oscilaciones y observar en algunos casos el fenómeno de resonancia, caracterizado por un aumento de la corriente (ya que la señal de entrada elegida corresponde a la pulsación propia del circuito, calculable a partir de la ecuación diferencial que lo rige).
Circuito sometido a un escalón de tensión
Si un circuito RLC en serie es sometido a un escalón de tensión  , la ley de las mallas impone la relación:
Introduciendo la relación característica de un condensador:
Se obtiene la ecuación diferencial de segundo orden:
Donde:
·         E es la fuerza electromotriz de un generador, en Voltios (V);
·         uC es la tensión en los bornes de un condensador, en Voltios (V);
·         L es la inductancia de la bobina, en Henrios (H);
·         i es la intensidad de corriente eléctrica en el circuito, en Amperios (A);
·         q es la carga eléctrica del condensador, en Coulombs (C);
·         C es la capacidad eléctrica del condensador, en Faradios (F);
·         Rt es la resistencia total del circuito, en Ohmios (Ω);
·         t es el tiempo en segundos (s)
En el caso de un régimen sin pérdidas, esto es para  , se obtiene una solución de la forma:
Donde:
·         T0 el periodo de oscilación, en segundos;
·         φ la fase en el origen (lo más habitual es elegirla para que φ = 0)
Lo que resulta:

Donde   es la frecuencia de resonancia, en hercios (Hz).

Fuerza interna de un solenoide

                                        Fuerza interna de un solenoide
Un solenoide es cualquier dispositivo físico capaz de crear un campo magnético sumamente uniforme e intenso en su interior, y muy débil en el exterior. Un ejemplo teórico es el de una bobina de hiloconductor aislado y enrollado helicoidalmente, de longitud indeterminada. En ese caso ideal el campo magnético sería uniforme en su interior y, como consecuencia, afuera sería nulo.
En la práctica, una aproximación real a un solenoide es un alambre aislado, de longitud finita, enrollado en forma de hélice (bobina) o un número de espirales con un paso acorde a las necesidades, por el que circula una corriente eléctrica. Cuando esto sucede, se genera un campo magnético dentro de la bobina tanto más uniforme cuanto más larga sea la bobina. La ventaja del solenoide radica en esa uniformidad que a veces se requiere en algunos experimentos de física. Pero también tiene inconvenientes: es más engorroso que lasbobinas de Helmholtz y no puede producir un campo magnético elevado sin un equipo costoso y un sistema de refrigeración. André-Marie Ampère inventó en 1820 el nombre de solenoide, en un experimento en las corrientes circulares.2 .
La bobina con un núcleo apropiado, se convierte en un electroimán. Se utiliza en gran medida para generar un campo magnético uniforme.
Se puede calcular el módulo del campo magnético en el tercio medio del solenoide según la ecuación:
siendo:
·         m, la permeabilidad magnética,
·         N, el número de espiras del solenoide,
·         i, la corriente que circula y
·         L, la longitud total del solenoide.
Mientras que el campo magnético en los extremos de este pueden aproximarse como:


 ley de Ampère
En física del magnetismo, la ley de Ampère, modelada por André-Marie Ampère en 1831,1 relaciona un campo magnético estático con la causa que la produce, es decir, una corriente eléctrica estacionariaJames Clerk Maxwell la corrigió posteriormente y ahora es una de las ecuaciones de Maxwell, formando parte del electromagnetismo de la física clásica.
La ley de Ampére explica, que la circulación de la intensidad del campo magnético en un contorno cerrado es igual a la corriente que recorre en ese contorno.
El campo magnético es un campo angular con forma circular, cuyas líneas encierran la corriente. La dirección del campo en un punto es tangencial al círculo que encierra la corriente.
El campo magnético disminuye inversamente con la distancia al conductor.

La ley de Ampère-Maxwell o ley de Ampère generalizada es la misma ley corregida por James Clerk Maxwell que introdujo la corriente de desplazamiento, creando una versión generalizada de la ley e incorporándola a las ecuaciones de Maxwell.
Forma integral
siendo el último término la corriente de desplazamiento.
siempre y cuando la corriente sea constante y directamente proporcional al campo magnético, y su integral (E) por su masa relativa.
Forma diferencial
Esta ley también se puede expresar de forma diferencial, para el vacío:
o para medios materiales



lunes, 21 de marzo de 2016

CIRCUITO RC

CIRCUITO RC
Un circuito RC es un circuito compuesto de resistencias y condensadores alimentados por una fuente eléctrica. Un circuito RC de primer orden está compuesto de un resistor y un condensador y es la forma más simple de un circuito RC. Los circuitos RC pueden usarse para filtrar una señal, al bloquear ciertas frecuencias y dejar pasar otras. Los filtros RC más comunes son elfiltro paso alto, filtro paso bajo, filtro paso banda, y el filtro elimina banda. Entre las características de los circuitos RC está la propiedad de ser sistemas lineales e invariantes en el tiempo; reciben el nombre de filtros debido a que son capaces de filtrar señales eléctricas de acuerdo a su frecuencia.
En la configuración de paso bajo la señal de salida del circuito se coge en bornes del condensador, estando este conectado en serie con la resistencia. En cambio en la configuración de paso alto la tensión de salida es la caída de tensión en la resistencia.

Este mismo circuito tiene además una utilidad de regulación de tensión, y en tal caso se encuentran configuraciones en paralelo de ambos, la resistencia y el condensador, o alternativamente, como limitador de subidas y bajas bruscas de tensión con una configuración de ambos componentes en serie. Un ejemplo de esto es el circuito Snubber.

Comportamiento en el dominio del tiempo
Carga
El sistema reaccionará de distinta manera de acuerdo a las excitaciones entrantes, como ejemplo, podemos representar la respuesta a la función escalón o la función de salto. La tensión originalmente desde el tiempo 0 subirá hasta que tenga la misma que la fuente, es decir,  . La corriente entrará en el condensador hasta que entre las placas ya no puedan almacenar más carga por estar en equilibrio electrostático (es decir que tengan la misma tensión que la fuente). De esta forma una placa quedará con carga positiva y la otra con carga negativa, pues esta última tendrá un exceso de electrones.

El tiempo de carga del circuito es proporcional a la magnitud de la resistencia eléctrica R y la capacidad C del condensador. El producto de la resistencia por la capacidad se llama constante de tiempo del circuito y tiene un papel muy importante en el comportamiento de este.  .


Teóricamente este proceso es infinitamente largo, hasta que U(t)=Umax. En la práctica se considera que el tiempo de carga tL se mide cuando el condensador se encuentra aproximadamente en la tensión a cargar (más del 99% de ésta), es decir, aproximadamente 5 veces su constante de tiempo.


La constante de tiempo τ marca el tiempo en el que la curva tangente en el inicio de la carga marca en intersección con la línea de máxima tensión la constante de tiempo τ. Este tiempo sería el tiempo en el que el condensador alcanzaría su tensión máxima si es que la corriente entrante fuera constante. En la realidad, la corriente con una fuente de tensión constante tendrá un carácter exponencial, igual que la tensión en el condensador.

La máxima corriente   fluye cuando el tiempo es inicial(es decir t=0). Esto es debido que el condensador está descargado, y la corriente que fluye se calcula fácilmente a través de la ley de Ohm,